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In  the first part of the paper, a mixing layer of tanh y form is considered, and two- 
dimensional solutions of the non-linear inviscid equations are found representing 
periodic perturbations from the neutral wave of linearized stability theory. To 
second order in amplitude the solutions are equivalent to the equilibrium state 
calculated by Schade (1964), who studied the development of perturbations in 
time and found an evolution towards that equilibrium state. The present calcula- 
tion, however, is taken to fourth-order in amplitude. It is noted that the solutions 
presented in this paper are regular, even though viscosity is ignored; and the 
relationships to the singular (if inviscid) time-dependent solutions of Schade are 
explained. Such regular, inviscid solutions have been found only for odd velocity 
profiles, such as tanh y. 

Although the details of the velocity distributions are not of the form observed 
experimentally, it is shown that the amplitude ratios of fundamental and first 
harmonic, for a given absolute amplitude, are comparable with those observed. 

In  part 2 some exact non-linear solutions are presented of the inviscid, incom- 
pressible equations of fluid flow in two or three spatial dimensions. They illustrate 
the flows of part 1, since they are periodic in one co-ordinate (x), have a shear in 
another (y) and are independent of the third. Included, as two-dimensional cases, 
are (i) the tanh y velocity distribution for a flow wholly in the x-direction, (ii) the 
well-known solution for the flow due to a set of point vortices equi-spaced on the 
axis, and (iii) an example of linearized hydrodynamic (Om-Sommerfeld) stability 
theory. The flows may involve concentrations of vorticity. In  three-dimensional 
cases the z component of velocity is even in y, whereas the x component is odd. 
Consequently, the class of flows represents, in general, small or large periodic 
perturbations from a skewed shear layer. Time-dependent solutions, representing 
waves travelling in the x direction may be obtained by translation of axes. 

1. Introduction 
Schade (1964) has considered the application of current ideas in non-linear 

hydrodynamic stability theory to the Aow in a tanh y shear layer. He started from 
an unstable perturbation given by linearized stability theory, the wave-number 
chosen (a)  being less than the value (unity) appropriate to a neutral disturbance 
(neither amplifying nor decaying) at  infinite Reynolds number (see figure 1, 
where A is the neutral wave-number and B the chosen wave-number, a). By 
incorporating non-linear effects he then derived an equation for the growth with 
time of the perturbation, and calculated an amplitude at which the perturbation 
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equilibrated in a natural manner; in the calculation it was assumed that a was 
close to the neutral value of unity, this being a way of ensuring small amplitudes. 
A difficulty which arose in the analysis was connected with the fact that the 
linearized-theory equations for non-neutral perturbations are singular; this led 
Schade to introduce viscosity, as described by Lin (1955), to smooth out the 
effect of that singularity on the perturbation velocity distributions. 

It is emphasized here that another perturbation scheme, not involving 
singularities and not requiring the introduction of viscosity, can be used to 
calculate the equilibrium amplitude and the flow field for small, but non-zero, 
perturbations from the tanh y profile. Instead of following the development of 
perturbations with time, as Schade did, we may expand both the velocity and 
the wave-number in powers of a small parameter E, and thereby obtain finite- 
amplitude steady solutions a t  wave-numbers less than the neutral value. As 
emphasized elsewhere (Stuart 1960) the two approaches should, subject to 
related assumptions being made, yield the same solution. This is shown to be 
the case in the present paper, and in making the comparison with Schade’s work 
we are able to clarify certain aspects of his theory. Especially i t  becomes clear that 
the effect of viscosity, which is vital in his solution a t  small amplitude, dies out 
at larger amplitudes as the flow approaches equilibrium, a t  least in the sense that 
viscosity ceases to appear explicitly in the solution. 

Both Schade’s solution and that of the present perturbation scheme are 
calculated for the case in which the mean flow (averaged in the flow direction) 
is left unperturbed. Other possibilities could be investigated by similar means, 
and which case really occurred would depend on matters such as initial conditions 
and boundary-layer growth, both these factors being ignored in Schade’s work 
and the present paper. It happens, however, that there are some exact solutions 
of the nonlinear inviscid flow equations, related to those described in this paper 
but involving mean-velocity changes, and these are described in part 2 .  

The relevance to experiment of the solutions described is considered in the last 
section of the present paper. 

Part 1. Perturbation Theory 

2. Equations of motion and a method of solution 
We consider an infinite region of fluid, which is inviscid and incompressible. 

Velocity components, lengths and time are made non-dimensional in some 
convenient way. Then the vorticity equation for two-dimensional motion of the 
inviscid incompressible fluid is of the form 

where $ is the stream function, t is the time, x is the co-ordinate in the direction 
of mean flow and y is the co-ordinate normal to that direction; x and y velocity 
components are 21 = a@/ay and v = - a@lax. We shall consider solutions that are 
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periodic in x and time, and for this reason it is desirable to introduce a wave- 
number (a) and a wave propagation speed (c). This we do by defining 

ax = 5, act = r ,  (2.2) 

and then equation (2.1) takes the form 

a 
c (P + a2$5J + $($; + a2$gJ - $&V + a,$&) = 0, (2.3) 

where we have divided by a. A prime denotes differentiation with respect to y, 
and a suffix [ differentiation with respect to g. 

Let us now look for a solution of (2.3) in the form of a perturbation series: 

31. = $o(Y) + +l(YY 8 + @$2(Y, 6 )  + e3$3(y, 0 + * * - 9  (2.4) 

a2 = at + g a l  + e h ,  + $a, + e4a,+. .., (2 .5)  

c = co+EC1+€2C2+ .... (2.6) 

Substituting (2.4), (2.5) and (2.6) in (2.3), and separating out powers of e, we 

with related equations for higher-order amplitudes. (We shall consider the higher- 
order equations later for a special case.) As boundary conditions we have 

11.,+0 as y + + m  (n=0,1 ,2 ,  ...) (2.10) 

with the $n periodic in 6 and r .  
Our object is to solve the set of equations in succession, and simultaneously 

to determine the coefficients ao, a,, a,, co, cl, c2, etc. Let us first examine (2.7): 
since we are seeking for wave solutions, which are neither amplifying nor 
decaying, we write 

(This is equivalent to  #,(y) cos a(x - ct).) Substituting (2.1 1) in (2.7) we obtain 

(2.11) 

(2.12) 

$1 = A ( Y )  cos (E-7)-  

($h- co) (fl; - at 91) - $[ $1 = 0- 
27-2 
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The boundary conditions are 

& + O  as y-+'co. (2.13) 

Since $A = Uo is the original mean motion ( E  + 0 ) ,  (2.12) is clearly the inviscid 
Orr-Sommerfeld (or Rayleigh) equation. Suppose the profile Zo has a point of 
inflexion, at  which ${ = 0 ;  then, for many velocity profiles, a neutral solution of 
(2.11) exists with co given by the value of Uo at the point of inflexion. The value 
of E: is chosen so that the solution satisfies the boundary conditions (2.13). One 
well-known solution, that for a mixing layer, is 

$; = tanhy, $1 = sechy, a: = 1, co = 0, (2.14) 

while another, that for a jet, is 

$4 = sech2 y, $1 = sech2 y, a: = 4, co = 6. (2.15) 

We now consider equation (2.8), and seek a solution of the form 

$2 = $ 2 1 ~ 0 ~ ( 5 - - 7 ) + $ 2 2 ~ 0 ~ 2 ( ~ - - 7 ) ,  (2.16) 
and we find 

-. co) (7% - 4 $21) - $: $21 = a,($; - co) $1 + cl(Y;- 4 $l), (2.17) 

($; - G o )  (&2 - 4 4  $22) - $: $22 = t (d1  $: - $i $3 (2.18) 

Let us require, if possible, that our solution be regular. Since ($A - co) has a zero 
the solutions of equations (2.17) and (2.18) will not be regular unless the right- 
hand sides have zeros to cancel that of ($; - co). Withuse of (2.12) equation (2.17) 
can be re-written 

541 - 4 $21 + K(Y) $21 = a1 $1 - c1 K(Y - 1 $1 , (2.19) 

where K(Y) = - $;/($A - cob (2.20) 

which is a regular function of y. If neither g1 nor K(y) has a zero a t  the critical 
point, where $A = co, then the right-hand side is singular. We therefore set 
c1 = 0 to avoid this possibility. If now we multiply (2.19) by the adjoint function, 
which is $1 because the left-hand side of (2.19) is self-adjoint, corresponding to 
the self-adjoint form of (2.12), integrate between the limits and apply the 
boundary conditions 

$21+0 as Y - + + = ) ,  (2.21) 

we find ctl = 0. Thus $21 = const. $l. This, however, merely repeats the eigen- 
solution $1 and may be omitted; if kept it would imply a re-definition of the 
amplitude E .  

From (2.12) and (2.20), (2.18) becomes 

($A - G o )  (&2 - 4 4  $22) - $: $22 = - W ( Y )  4;. (2.22) 

In  general the solution of this equation is singular unless the right-hand side has 
a zero at the critical point to counter the zero in ($A - co).  Normally $1 is not zero 
at this point (see, e.g. Lin 1955, p. 54), but the function K'(y) is zero there for 
velocity profiles which are odd in a co-ordinate system chosen to move with the 
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velocity of the inflexion point, such as that given by solution (2.14); for such odd 
velocity profiles, which correspond to mixing layers, we can obtain a regular 
solution. For jet or wake profiles, however, such as that given by solution (2.15), 
K’(y) is not zero at the critical point, and the solution of $22 will have a singularity. 
We shall concentrate in what follows on the mixing-layer profiles. 

Turning now to equation (2.9) we seek a solution in the form 

@3 = $31 cos (g - T )  + $32 cos Z(C - T )  + #33 cos 3(C - 7) .  (2.23) 

The equations for $31, $32, and $33 are 

($A - ‘ 0 )  (6;l- $31 - a2 $1) - $0” $31 

= - &(&2 - 4 4  $22) + 4 A 2 ( @ ;  - 4 $1) 
+ $22($; - 4 $2 - &$1($[2 - 4 ~ ;  $22) + cz(@; - $1), (2.24) 

(2.25) (@h - ‘ 0 )  ($& - 4ag $32 - 4al $22) - @: $32 = O ,  

(@h - G o )  6 3  - 9 4  $33) - @: $33 

= - +5%(&2 - 4 4  $22) - &9;2(@; - 4 91) 
+ *$22($Y - a; 93 - 8$1($:2 - 4 4  &2). (2.26) 

We shall adopt the same criterion as previously of seeking a regular solution. 
If is odd i t  can be seen from (2.14) that q51 is even, since that particular 
property is generally true for odd velocity profiles. Moreover, (2.22) indicates 
that $22 is even. Thus the right-hand sides of (2.24) and (2.26) are odd except for 
the term proportional to c2 in (2.24). If c2 is not zero, therefore, $31 is singular, 
because (@;-at$1) has no zero at the critical point to cancel that in ($h-co). 
We set c2 = 0. In  order for equation (2.24) to have a solution satisfying the 

(2 .27)  
boundary conditions 

i t  is necessary for a2 to have a special value. This can be obtained by standard 
methods, with use of the adjoint function. 

It will be recognized that we have sought solutions of (2.71, (2.8) and (2.9) 
which are periodic in 5, which are regular, and whose mean values with respect 
t o  5 are zero. We have excluded O(@)  (n= 1,2,3,  ...) corrections to the basic 
mean stream function. If such corrections were included the mean stream 
function could be redefined (in 2.4) to include the higher-order terms; then the 
series would have the form described in this section, with $kn(y, 6) (n = 1,2,3,  . . .) 
having zero mean with respect to (. We shall return to this point later, especially 
by discussion of a class of solutions in part 2. 

$31+0 as y-++m, 

3. Solution for a mixing-layer profile 

mixing-layer profile, namely 
uo = $A = tanh y; 

for this profile the solution of equation (2.12) is given by formulae (2.14). It then 
follows that (2.22) takes the form 

We now consider the solution of the equations of the last section for a special 

(3.1) 
- 

#i2 - 4& + 2 sech2 y$22 = sech4 y, (3.2) 
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subject to the boundary conditions 

$ 2 2 + 0  as y +  +03. 

$22 = - '4 sech2 y. The solution is 
(3.3) 

(3.4) 

As mentioned in 9 2 , $21 may be taken to be zero, so (3.4) completes the solution to  
second order in amplitude. 

It is now possible to consider(2.24), which takes the form 

$:1 - $31 + 2 sech2 y$31 = a2 sech y + Q sech5 y, (3.5) 

the boundary conditions being (2.27). The adjoint function required for the 
solution of (3.5) is g1, because the operator on the left-hand side of (3.5) is in self- 
adjoint form. If we multiply (3.5) by $1 = sech y and integrate from - 03 to + a, 
we find that 

(3.6) 
since $1 satisfies (2.12). Thus, from (3.5), 

4 
a2 = - Fj sech6 y dy/lm sech2 y dy = - - 

m 

2 -m -m 3 '  (3.7) 

Having obtained the value of u2, we may now solve (3.5) to obtain 

$31 = sech y In cosh y - '4 sech3 y. (3.8) 

An arbitrary multiple of the eigenfunction may be added to (3.8), but we omit it 
because it may be regarded simply as altering the definition of the amplitude E .  

The solution for $32 is 

while the equation for $33 is 
$32 = '3 (3.9) 

$J3 - 9$33 + 2 sech2 y$33 = - 5 sech5 y, (3.10) 

and the boundary conditions are 

$33-+ 0 as y +  kco. 

$33 = &sech3 y. The solution is 

(3.11) 

(3.12) 

Higher-order terms in the series (2.4) can be calculated in a similar way to the 
solutions already described in this section, from equations like (2.9). For an odd 
mixing-layer profile we have deduced that regular solutions have c = 0 to order 
s2; for the calculation of the higher-order terms we now set c = 0. Moreover, it 
can be argued that a3 = 0, just as a, = 0. The higher-order solution takes the form 

(3.13) 

(3.14) 

$4 = $42 cos 2< + $44 'OS '6, 
$5 = $51 + $53 cos 3E + $55 cos 56, 

since c = 0 implies 7 = 0 for finite t. Detailed calculation shows that 

qj 42 - - _  - sech2 y In cosh y + Q sech2 y + 4 sech4 y, (3.15) 

(3.16) $44 = - & sech4 y, 



On Jinite amplitude oscillations in laminar mixing layers 423 

while $51 satisfies 

$!l- $51 f sech2 Y$51 

= a4 sech y - 8 sech y In cosh y + + sech3 y 

+ 5 sech5 y In cosh y - g sech5 y - 14 sech7 y. (3.17) 

The boundary conditions on $51 are 

$51 + 0 as y-+ kco. (3.18) 

In view of the form of the left-hand side of (3.17), a4 may be calculated just as 
a2 was. We then find that 

a4 = ?(I +QIn2). (3.19) 

Having calculated a4, we know the solution for the stream function to the 
fourth power in amplitude. There is no point in evaluating $51, etc., unless we go 
on to calculate a6, because the latter coefficient also contributes to the terms of 
fifth power in amplitude (through E $ ~ ) .  The solution to O(e4) is 

$ = In cosh y + e sech y cos ( - sech2 y cos 2( 

+ s3{ (8 sech y In cosh y - sech3 y) cos ( + 
+ e4{( - Q sech2 y In cosh y + Q sech2 y + t sech4 y) cos 2( 

sech3 y cos 3(} 

-&sech4y cos49+  ..., (3.20) 
( = ax, (3.21) 

(3.22) a2 = 1 -p+y(i+ +1n 2) &4+ .... 
The latter formula can be inverted to give 

E = k [$(1-a2)]4[1+$(3+ 1n2)(l-a2)+ ...I. (3.23) 

The coefficient a6, if known, would yield a term of order (1 - ~ 9 ) ~  within the square 
bracket of (3.23), and would therefore contribute a term of order (1 -a2)%, or 
fifth power in amplitude, in the O ( E )  term of (3.20). 

One point that seems fairly clear is that the series (3.20) is probably not con- 
vergent for all y because, when y +- k co, the terms proportional to cos ( are 
approximately given by 

ssech y cos 6. (1 + 3s2( I yI -In 2) + ...}. (3.24) 

It is seen that the term O(s3) is proportional to lyl so that, for Iyl of order e-2 or 
greater, the basic perturbation solution (3.20) must break down. Even so it is 
arguable that this feature affects the solution only a t  large values of IyI (-@), 
where (3.20) may be regarded as an invalid expansion of the true solution. In  
fact (3.24), which gives the dominant part of the perturbation (3.20) from 
In Gosh y, appears to be an expanded form, valid for s2 I yI < 1, of €2" e-alvl cos (, 
which is of the form of the true perturbation solution of (2.1) as 1 yI +- co, in the 
case when any mean perturbation is identically zero. Other harmonics, if regarded 
similarly, would give further terms in an expansion valid for I y( of order €2 or 
greater. These considerations suggest that (3.20) is a valid representation for 
finite y. 
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The series (3.23) appears to be valid in the truncated form shown only for a 
small range of a, say 1 < a < 1 -A, corresponding to E < 5 approximately. The 
range of a does not extend down to the value of a, of order 0.44 (Michalke 1965) 
for maximum amplification (point C of figure 1). 

h 

a 

4. Comparison with Schade’s work on non-linear growth to equilibrium 
In the work so far described we have evaluated a finite-amplitude oscillatory 

flow in equilibrium a t  infinite Reynolds number. The conditions that we have 
applied in order to obtain this solution have included the requirements (i) that it 
shall be regular and (ii) that the mean part of the motion shall be unchanged. 
The latter condition could, as mentioned earlier, easily be relaxed, but condition 
(i) is more crucial. 

Stable y-:: R+m 

Unstable 
.C 

R 
FIGURE 1. Schematic stability diagram for tanh profile. 

Let us refer to figure 1 (see, for example, Betchov & Szewczyk 1963): by 
perturbation about the point A (on the asymptotic branch of the neutral curve 
with a non-zero at infinite Reynolds number), the finite-amplitude oscillation 
(3.20) is valid at a point B sufficiently close to A .  On the other hand Schade (1964) 
has studied the temporal development, a t  a point B, of the solution which is 
amplified according to linearized theory. He finds that an equilibrium state of 
finite amplitude is attained. It is natural to suppose, as has been argued in a 
related problem (Stuart 1960, p. 69), that the present solution should be equi- 
valent to Schade’s solution, when the latter has reached equilibrium. Since 
Schade (1964) has calculated only the first (a1) of the nonlinear coefficients in his 

(4.1) expansion 

of the amplitude A(t )  of the perturbation, his solution is valid only to second- 
order in amplitude, O(cJ. This corresponds to our result O(e2), as we shall shortly 
see, and the comparison will be made on this basis. 

d ~ p t  = - i a c ~ + a l ~  I A ~ Z + ~ , A  p 1 4 +  ... 

To O(e2),  which is equivalent to 0 ( 1  -a2) because of (3.22), (3.20) yields 

9 = In cosh y + [$( 1 - a2)]4 sech y cos ax -A( 1 - a2) sech2y cos 2ax. (4.2) 
(We consider the positive sign only in (3.23), since the negative sign involves 
simply a change of phase.) By differentiation with respect to x we obtain the 
y-component of velocity as 

w = a[$( 1 - a2)]* sech y sin ax - $a( 1 - a2) sech2 y sin 2ax. (4.3) 
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Schade (1964) gives 

v = ~ , v , ( y )  eiaz + Aecl(y) e-iaz + A2,v2(y) eziaz +A: gZ(y) e-2 ia 9 (4.4) 

where A,  is the equilibrium amplitude (t -+ + CO) and a tilde ( N ) denotes a complex 
conjugate; the expression is valid to second order in amplitude. Moreover, from 
formulae (ll), (13), (3) and (34) of his paper, we have 

vl = sech y, vz = - i sechz y, A ,  = &(377aci)3 + ..._ (4.5) 

Since c is pure imaginary, c = i c i .  From Drazin & Howard (1962, p. 281) we 
have, after omission of an incorrect factor of 2 ,  

ci = (l-a2)/77+ .... (4.6) 

(4.7) 
(4.8) 

Substituting (4.5) and (4.6) in (4.4) we obtain 

A, = *[3a( 1 -a2)]*+ ... 
v = 2A, sech y cos ax + 282, sech2 y sin 2ax. and 

If we change phase by replacing ax in (4.8) by (ax + 3~/2) and note that a may be 
written in as [l- i(1- a2)] approximately, we find that (4.8) and (4.7) yield (4.3) 
to O( 1 -az). To this order, we have established the equivalence of the equilibrium 
state towards which Schade’s solution tends, with the finite-amplitude state 
calculated here. 

There are, however, difficulties in interpretation of Schade’s work. Since his 
expansion (4.4) is based on the linearized amplified solution a t  B, there is a 
Reynolds stress of order C , I A ~ ~  (see, e.g. Lin 1955, p. 54 and Michalke 1964, 
p. 549). This persists according to (4.4) even when equilibrium is reached. But, 
for an inviscid flow in an equilibrium state of finite amplitude, the dissipation of 
fluctuation energy is zero; consequently, the Reynolds stress must convert a zero 
amount of energy from the mean motion to the fluctuations. In  fact, as (3.20) 
shows, the Reynolds stress must be zero. How is the Reynolds stress ci IAIz 
nullified in equilibrium? A clue is given by (2.1), (2.2) and (36) of Schade’s paper: 
these show that the order A: terms in an expansion like (4.4) above include 

A,  IAe12v11) e i a z + J ,  IAe12@’) e-iaz, (4.9) 

together with the 3a harmonic; moreover, wil) is complex valued. These facts 
indicate that there is a Reynolds-stress component of order IA,14 in equilibrium. 
But, since both ci and IA,I2 are O( 1 - a2) in equilibrium, it can be seen that the 
O(ci and 0(lA,l4) contributions to the Reynolds stress are of the same order 
of magnitude, namely O( 1 - az)2. Additional terms of this order may arise also 
from O( 1 - a2)% term in A,, if a2 is included in (4.1). The upshot of this discussion 
is our inference that the sum total of such Reynolds-stress contributions, 
O(1-  az)2, must be zero, because an equilibrium state is attained. Equation (3.20) 
of this paper gives that state, and the Reynolds stress there is zero. 

Another difficulty of interpretation of Schade’s work concerns the spatial 
distribution of vorticity. Equation (2.1) states that, in the two-dimensional 
inviscid flow, the total time derivative of the vorticity is zero. This means that, 
as a particle of fluid is convected about, its vorticity does not change. Conse- 
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quently, in particular, the maximum magnitude of vorticity over the whole flow 
field can neither increase nor decrease with time. Let us calculate the vorticity in 
equilibrium, as given by Schade’s work to second-order in amplitude. As implied 
by the equivalence established in the previous paragraph, we may calculate this 
from (3.20). We obtain 

- V2$ = - sech2 y + [3( 1 - a2)]4 sech3y cos c - 3( 1 - a2) sech4y cos 2[ + O( 1 - &)+I. 
(4.10) 

In  the basic tanh y flow, from which Schade developed the time-dependent 
perturbation which led to (4.10), the maximum magnitude of the vorticity occurs 
a t  y = 0 and is unity. On the other hand, at  6 = n, y = 0, (4.10) yields a value 

lV2$1c=r = 1 + [3(1 -a2)]4 +8(1 -a2) + ... + 0 ( 1  -a2)%, (4.11) 
y=O 

which is greater than unity since a2 < 1. How does this increase of vorticity 
magnitude come about? The answer may lie in the fact that Schade’s problem is 
not truly inviscid, since viscosity is required at small amplitudes to eliminate the 
singularity (albeit in the complex y-plane, cf. Lin 1955) and to enable the non- 
singular development of the appropriate Reynolds stress. Presumably then, the 
greater maximum magnitude of the vorticity arises from the action of viscosity 
in smoothing out the pole in the vorticity of inviscid theory, and persists even 
when the explicit effect of viscosity has disappeared (in the equilibrium state). 
However, this suggestion does not completely settle the issue, and for further 
ideas on complex matters of this kind the author is referred to Michalke (1965). 

As far as the perturbation scheme of this paper is concerned the difficulty does 
not arise, since we are asking simply about possible equilibrium states, and not 
how they develop in time from some other state of unstable equilibrium. It is also 
worth noting that the circulation around the rectangle bounded by the lines 
x = 0 and 2n/a, and y = -t 00, is the same for the tanh y profile as for the equi- 
librium flow; the circulation is, of course, an area integral of vorticity by Stokes 
theorem (see a discussion in part 2). 

Part 2. Some exact solutions 

5. Mathematical introduction 
As an illustration of the studies of part 1, we here describe and comment on a 

class of solutions of the (non-linear) inviscid incompressible equations of motion, 
first of all in plane flow, but then in three dimensions. 

Considering steady two-dimensional wave motions based on the hyperbolic- 
tangent velocity profile, we note that such flows are steady in a frame of reference 
which moves with the velocity of the inflexion point. In  that frame the relevant 
differential equation (2.1) can be written, by elimination of the pressure, in the 
form of the vorticity equation, which states that the Jacobian of stream function 
($) and vorticity ( - V2$) is zero. Thus we know that an equation of the form 

V2$ = f($) (5.1) 
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is valid, where f is some function. Moreover the stream function for the parallel 
flow with the hyperbolic-tangent profile, namely @ = In cosh y, where y is the 
direction of shear and x is the direction of flow, satisfies the differential equation 

V2@ = e-W. (5.2) 

This partial differential equation is an example of Liouville’s equation, in which 
the Laplacian of @ is an exponential function of $: 

V2$ = A e-B@. (5.3) 

The parameters A and B are supposed real. 
SuchequationshaveattractedtheattentionsofLiouville (1853),PoincarB (1898), 

Picard (1893, 1898,1905), Lichtenstein (1913, 1915), Bieberbach (1916), Walker 
(1915) and Brodetsky (1924), and brief discussions are to be found in books by 
Bateman (1952) and Davies (1962). (The author acknowledges the help of Dr E. 
Varley in directing him to some of these papers.) Many exact solutions of (1.3) are 
known, including Liouville’s general solution 

(5.4) 

where u and v are conjugate functions and suffixes denote derivatives. Other, 
possibly singular, solutions include 

where u is a harmonic function (Brodetsky 1924), and 

(5.5) 

which has not been seen by the author previously. 
A solution related to (5.4) has been derived by Dr E. Varley (unpublished) in 

(5.7) 
the form 

e*B@ = al(z) El@) + a2(z)  E2 (Z) (AB > 0) ,  

where a,(z), a2(z)  are independent analytic functions of z( = x + i y )  and are 
solutions of f,, = G M f  (5.8) 

with ~ X ~ O ~ ~ - C X ~ E ~  = A, lAI2 = AB/8. (5.9) 

The function G is an arbitrary analytic function of z. An overbar denotes a 
complex conjugate. The correspondence between (5.4) and (5.7) may be estab- 
lished, though it is not completely straight-forward. 

In  the present paper we shall describe a class of solutions of (5.2) and, by a 
simple generalization, of (5.3) also. The solutions have not, to the author’s 
knowledge, appeared in the literature previously;-j- they are periodic in x and 

t Since the time of writing, the author has read the excellent thesis of Dr J. Schmid- 
Burgk (1965), who discovered these solutions (and others in the context of Plasma Physics) 
independently. The author is indebted to Professor A. Toomre for drawing his attention 
to  this work. 
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represent inviscid shear layers which are periodic in the direction of the main 
flow. We shall see also that, in a certain limit, we can reproduce the mathematical 
solution of Laplace’s equation for the flow due to a single set of point vortices, 
equi-spaced along a line and of equal strength, and, in another limit, the flow field 
of a vortex sheet. Time-dependent solutions can be obtained by translation of 
axes, and a class of three-dimensional flows is derivable by a simple extension. 

6. The vorticity equation and an exact solution 
The vorticity equation for two-dimensional motion is (2.1) where the vorticity 

(6.1) 
5 is given by 5 = -V2$. 

For solutions which are steady in some frame of reference, we consider (5.1) and, 
motivated by the arguments of the previous section, (5.2). The solution of (5.2) 
that we wish to discuss is 

11. = ln(Ccoshy+Acosx), (6.2) 

A = (CZ- 1)3. (6.3) 

where C and A ( > 0 )  are related by 

We shall suppose that C and A are positive. Clearly C = 1 gives the shear layer 
solution of hyperbolic-tangent form. 

Although the author first encountered (6.2) by another approach, it can be 
derived from Liouville’s solution (5.2) by use of 

(sin x + i sinh y) 
u+iv = (C-A)tan$z = ( C - A )  

cos x + cosh y ’ (6.4) 

where z = x + i y .  Alternatively, we can substitute 

G(z)  = a, a1 = (C - A)+ sin &, ag = (C + A)* cos 42 (6.5) 

in Varley’s solution (5.7), (5.8),  to derive the same result (6.2). 
There are two forms of (6.2) which warrant immediate attention. 
(i) If A is small, an approximate form of (6.2), linearized in A,  is 

@ = ln(Ccoshy)+esechycosx+ ..., (6.6) 

where E = A/C. (6.7) 

11. = lncoshy+$(y)cosax+ ... (6.8) 

(6.9) 

The O(s) perturbation could have been obtained alternatively by substitution of 

in (2.1) and linearization in $, from which $ would satisfy the inviscid Orr- 
Sommerfeld equation 

With U = tanhy, c = 0, a = 1 we have $ = sech y (Curle 1956, Garcia 1956) as 
the solution tending to zero a t  y = 00, so that (6.6) is recovered. Thus the 
connexion of (6.2) with linearized-stability theory is established. 

(U - c) ($// -a”) - Ti//$ = 0. 

(ii) If C is large, (6.2) takes on the form 

@-lnC = ln(coshy+cosx), (6.10) 
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which (Lamb 1932, p. 224) represents the flow due to a set of point vortices of 
strength, K = - 4n and spaced at  a distance 2n apart on the x axis. It should be 
noted that (6.10) satisfies Laplace’s equation, so that the vorticity is zero (except 
at the point vortices). 

Thus, as C ranges from 1 to co, the flow represented by (6.2) ranges from the 
laminar shear layer 2 = tanh y to the flow due to a set of point vortices on the 
axis. We shall discuss the nature of the intermediate solutions in the next section. 

7. Flow patterns and vorticity distributions 

the vorticity, which is given by 
The change of the flow pattern with C is most easily discussed by reference to 

t; = - e-2$ = - [C cosh y + A  cos x]-~. (7.1) 

’t 

FIGURE 2. Contour for Stokes’s theorem. 

Consider now Stokes’s theorem applied to the contour shown in figure 1. We have 

where S denotes the area enclosed by the contour %. Now, from (6.2) we have 

(7.3) 
C sinh y 

C cosh y+ A cosx’ 
A sin x 

C cosh y + A cosx’ 
U =  V =  

Thus the contour integral depends only on the contributions at y = & co, since 
v = 0 on x = 0,2n. Consequently, we have 

r = -4n. (7.4) 
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The result, that the circulation is constant, implies (7.2) that the area integral 
of the vorticity is constant. As the parameter C is varied, the total vorticity 
within % is unchanged, but the distribution of 5 with x and y changes. 

9 I 

0 x 277 

FIGURE 3. Vorticity on y = 0 (periodic in 2). 

10 

7 :I (1) A = 0 (tanh y velocity profile) 
(2) 0.1 

6 

5 

4 

3 

2 

1 

- 2.0 - 1.5 - 1.0 - 0.5 0 0.5 1 1 *5 2 

FIGURE 4. Vorticity on x = T.  

(3j 0.2 
(4) 0.5 
(5) 1.0 
( 6 )  1.4 
(7) 5.0 

FIGURE 4. Vorticity on x = T.  

In  figure 3 the vorticity magnitude is shown as a function of x on y = 0, 
for different values of A .  For A = 0, 5 = - 1; for small positive values of A ,  
cis nearly sinusoidal in x; while for larger values of A a noticable peak of vorticity 
occurs a t  x = (2% + 1) n-, where n is an integer. In  figure 4 we illustrate the vorticity 
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magnitude as a function of y on x = n-. As A is increased 5 develops a strong 
peak at  y = 0. 

This peaking of the vorticity in the neighbourhood of the points x = ( 2 n  + 1 )  n-, 
y = 0 can be illustrated mathematically as follows. From (7 .1)  we see that, when 
C and A tend to infinity, 5 tends to zero, unless x and y are chosen so that 

Ccosh y+ A cosx + 0. 

Since C > A > 0, coshy 1, IcosxI < 1, 

the latter possibility (7.5) occurs if and only if 

y = 0, x = (2n+l )7rn .  (7 .7)  

< N - 4C2 when C -+ 00. (7 .8 )  

At such points y = - [C-AI-Z and, in view of (6.3). this yields 

Consequently, we have derived the result that, when C + 00, the vorticity is 
everywhere zero except a t  the singular points (7 .7 ) ,  where i t  tends to infinity. 
This establishes (6.10) and the description thereafter. We notice that in this 
limit, the vortex strength equals the value of I?, as it must (7.4) since there is but 
one vortex within the contour V. 

The streamlines are of the celebrated ‘Kelvin’s cat’s eyes’ form, as illustrated, 
for example, in Lamb (1932, p. 225).  The breadth of the ‘eat’s eyes’ in the y 
direction depends on C, tending to zero for C -+ 1 and to a finite, non-zero value 
for C -+ co (indicated by Lamb’s figure.) 

Other properties of the flow are also of interest and are best illustrated in 
another frame of reference. Suppose we write 

x1 = x + c t ,  u1 = u + c ;  

then the stream function (@l) in that frame is given by 
(7 .9)  

= cy +In [C cosh y + A  eos (q- c t ) ] .  (7 .10)  

This obviously satisfies (2 .1)  with xl ,  $1 replacing x, $. The corresponding 
velocity field is given by 

(7.11) 
C sinh y 

u = c +  V =  
A sin (x l  - ct) 

C cash y+ A cos (XI- c t ) ’  C coshy + A COB (x l  - ct) ’  

As y + co, u + c+ 1 ,  whereas when y -+ -co, u -+ c-  1. 
For given values of x1 and y we can consider the variation of u with time. An 

example, for x1 = 0, y = +, with C + co is shown in figure 5. We may also define 
an average velocity U(y), the average being conveniently taken with respect t o  
t at given x l .  From (7 .11)  we obtain 

C sjnh y 
[l +C2sinh2y]t‘ 

Z = C +  

We also define a length - 
l W  

[ l  - (Ti - c)2] dy 
= 

A’- 1 
= [:+ tan-1 (x)], 

(7.12) 

(7.13) 
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which, for c = 1 (lower fluid at rest) is equivalent to the momentum thickness 
defined by BrowaGd (1966). As functions of the co-ordinate 7 = y/6,, profiles for 
C = 1, J2, co are illustrated in figure 6. It is seen that the curves for C = 1 and 
J2 are very close together, while that C = 00 is qualitatively similar. 

ct 

FIGURE 5. Velocity record at y = 4. 

The mean-square fluctuating velocity at  a point is given by 

- - C3 sinh2 y cosh y C2 sinhz y 

[I +Czsinh2y]% -[1 +C2sinh2y]’ 
(7.14) 

Finally we note that the solution (6.2) described in the section may be generalized 
to the case when the circulation around %? is K and the wavelength is a. Then 
(6.2) becomes 

a 
(7.15) 

The velocity at  y = ~f: a3 is T Kj2a. The other formulae of this section are easily 
modified. 

If, in (7.15), we let a + 0 ,  we obtain $ - K ly1/2a, which represents two 
uniform streams (u = T K/2a for u 2 0) separated by a vortex sheet. 
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8. Three-dimensional flows 
If we consider (inviscid) flows which are independent of z, but whose z com- 

ponent of velocity, w, is not zero, the stream function of the u, v velocity com- 
ponents satisfies (2.1) while the z component of vorticity (5)  is given by (6.1); 
w satisfies the linear equation 

0 

I I I I 
- 5  -4 - 3  - 

(2) 1-0 

(3) m 

FIGURE 6. Mean velocity. 

This separation of the u, w field from w is an example of the ‘independence’ 
principle, as it is known in three-dimensional boundary-layer theory (e.g. 
Kiichemann, Crabtree & Sowerby 1963). Moreover, if II. is independent of time, 
we have 

where g is an arbitrary function of $. Here we shall assume that @ is given by 
(6.2). An important consequence of this assumption is that, since (6.2) shows 9 to 
be an even function of y, w is even if g is an analytic function. If on the other hand, 
g has a branch point this result may not be true for all the solutions w, since a 
change of branch may occur. 

Three-dimensional oscillations associated with the tanh y basic velocity profile 
have been studied by Benney (1961) in connexion with three-dimensional 
developments in boundary-layer transition. We consider here cases of waves 
which are oblique to the directjon of the basic (plane) flow, since they can be 

28 Fluid Mech. 29 

(8.2) w = 9(?& 
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described by (2.1) and (8.1). Especially we first consider waves which are 
stationary (6.2), (8.2) and then later we note the transformation to travelling 
waves. 

Such flows have the property that, when the parameter Cis unity, the velocity 
component w is proportional to tanh y. Then, since the velocity component u is 
also of this form, the total basic flow is proportional to tanhy and is alined in 
Some direction in the (x,z)-plane, whereas perturbations from that flow are 
periodic in x only; this implies, as required, that the perturbations are oblique t o  
the basic flow. 

An example which may appear, at  first sight, to satisfy these requirements is 
given by 

Using (2.3) (2.8), (4.2) we obtain from this 

g(+) = y[ 1 - Cz( 1 - mA/C) e-2@]4. (8.3) 

w = y[ l - ( l -me)  (coshy+eco~x)-~]3, (8.4) 

where y and m are parameters. [The positive and negative values of (8.4) are 
different branches.] In  order to ensure that w is real everywhere we require the 
expression within the square brackets to be positive. This is guaranteed by the 
condition 

which ensures also that w is not zero at any point. 

m > 2-e, (8-5) 

If, in (4.4), we set E = 0 we obtain the continuous solution 

(8-6) w = ytanhy, 

which involves a change of branch of (8.4) at  y = 0. Let us now consider an 
expansion of (8.4) for small E since, in so doing, we can make a comparison with 
Benney’s (1961) work. We obtain first of all 

w = y tanh y[ 1 + Z E  sech y cosech2 y cos x + me cosech2 913, (8.7) 

to f i s t  order in E .  Further expansion is not valid at and near y = 0; but if we 
ignore this difficulty and expand for small E ,  we obtain 

w = ytanhy+yEsech2ycosechycosx+~ymEcosech~sechy+O(e2). (8.8) 

In  this formal expansion the lack of validity near y = 0 is indicated by the 
presence of a pole in the perturbation velocity component (w) parallel to the wave 
fronts. This result was first found by Benney (1961, p. 221) for inviscid three- 
dimensional perturbations to a plane flow. If, to put the matter another way, we 
write the x, y, z velocity components 

(u, 21, w )  = (tanh y, 0, y tanh y) + e(ul, vl, wl) eia(z-co (8.9) 

and substitute in the linearized momentum equations corresponding to (2.1) and 
(8.1) we obtain a neutral solution with 

K = 1, c = 0, w1 = ycosechy sech2y. (8.10) 

This can be shown to be equivalent to Benney’s result; moreover, as far as the 
term periodic in x is concerned, i t  is equivalent to  (8.8). In  order to deal with 
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this singularity in the linearized three-dimensional perturbation equations for 
inviscid flow, Benney naturally introduced viscosity in the neighbourhood of 
y = 0, and thereby obtained regular solutions at large Reynolds numbers. There 
remains, however, the possibility that the nonlinear terms, if properly included, 
can be used to eliminate the singularity. This situation is illustrated by a com- 
parison of (8.4), which is finite at y = 0, with the expanded form (8.8), which is 
not. It is instructive to take this comparison further. We note first that (8.8), 
which is not truly a valid expanded form of (8.4), has a change from one branch 

W 

/ 
tanhy ,,’ 

-_--------- 

/- w(y) for x = 0 

/: w(y) for x = 0 

FIGURE 7. Illustration of solutions for skewed shear layer. 

of (8.4) to  the other at  y = 0. On the other hand continuous solutions of the form 
(8.4) retain the same branch in general (except for the special case E = 0 for which 
(8.6), with its implied change of branch of (8.4), is the continuous solution). For 
E + 0 the solutions (8.4) for w are even in y ,  whereas that for e = 0 is odd. In  
addition the invalid perturbation (8.8) also is an odd function of y .  These factors 
indicate that a given branch of (8.4) is not continuously connected, as the para- 
meter E is varied, with the solution (8.6) for E = 0. Moreover, a given branch is 
not related to the linearized theory perturbations of Benney’s type. 

At x = 0, (8.4) gives 

(8.11) 

As e --f 0 this remains even, and is illustrated schematically in figure 7, but it has 
a discontinuity in gradient at  y = 0 in the limit of E +  0. This contrasts with 
tanh y ,  also shown in the figure. 

The outcome of this discussion is that we should regard solutions (6.2) and (8.2) 
as representing perturbations (not necessarily small) from basic flows whose 

y(sinh2 y + 26 cosh y + me + e2)* 
cosh y +  E 

W =  

28-2 
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mean x components are odd, but whose mean z components are even. In the 
example (4.1) just discussed the latter function, .zU = y ltanhyl, has a disconti- 
nuity in gradient a t  y = 0. An example without that discontinuity in gradient for 
E -+ 0 is afforded by 

g($) = Ckye-”$, (8.12) 

w = ?[Gosh y + E cos XI-”, (8.13) 

where 1% is a positive integer. The basic flow ( A  = 0) in this case is ii = tanh y in 
the x direction and W = y sech” y in the x direction. This flow is a skewed three- 
dimensional shear layer. 

There is an interesting difference between the properties of (8.4), (8.13). On 
y = 0 (8.4) yields 

w(x, 0 )  = (2scosx+€~C0s2x+me)+/(1 +ECOSX) ,  (8.14) 

while (8.13) yields w(x, 0) = y( 1 + e cos x)-”. (8.15) 

Whereas (8.14) has scale e+ for small 8, the perturbation from (8.15) has scale e. 
A few words about the vorticity fields of the three-dimensional flows may be 

helpful. From (7.1) and (8.2) the three components are 

where a prime denotes a derivative. The balance of convection and stretching of 

u . v w  = w . v u ,  (8.17) vorticity namely that 

is such that each term is equal to 
1 

P 
- - (VP) 9’($), (8.18) 

whero u is velocity, w is vorticjty, p is pressure and p is density. Finally, we note 
that the flows (8.4), (8.13) remainrotational even whene + 1 (C -+ co) in contrast 
to the two-dimensional case. 

Time-dependent solutions, representing waves travelling in the x direction, 
may be obtained by use of the transformation (7.9), and then the velocity com- 
ponent, say wl, in the z direction is given by 

w1= S($l--CY), (8.19) 

$1 being defined by (7.10) and g being the function introduced in (8.2). Special 
cases one given by (8.3) and (8.13). 

9. Discussion 
Experiments on instabilities in shear layers have been reported by Sat0 (1956), 

Bradshaw (1966), Browand (1966) and Freymuth (1965). In  experiments the 
waves are periodic in time and grow in space; moreover, the shear layer thickens 
in the downstream direction, and the profile is not exactly of tanh y form (even 
in axes moving with the mean velocity at the inflexion point). In  the region of 
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instability, moreover, the mean profile is often not quite of shear-layer similarity 
form (Jones & Watson 1963), owing to close proximity of the plate (origin of the 
shear layer) and to the presence of the oscillations. Even so, observed naturally- 
occurring waves are found to occur approximately with the properties (of 
frequency, wave-number and growth rate) of the most-highly amplified distur- 
bances of parallel-flow theory; this equivalence is found both for time-growing 
waves (suitably interpreted; see Browand 1966, Bradshaw 1966, Sat0 1956, 
Michalke 1965) and in effect for spatially-growing waves, as can be seen from the 
fairly-close correspondence of time-growing and spatially-growing oscillations 
(Michalke 1965). 

With regard to the profiles, as functions of y, of (q)*, the root-mean-square 
fluctuation velocity (ut) in the flow direction, Browand has commented that the 
‘ fundamental ’ component of this quantity is very asymmetrical about the centre 
line of the shear layer in the experiments; on the other hand, he points out that 
neutral modes of linearized theory have a definite anti-symmetry when the mean 
profile is odd, as the experimental profiles nearly are. Consequently there is a 
disagreement between experiment and theory of neutral waves. However, 
Michalke (1965) has since found that the most-highly amplified waves (spatially) 
do have profiles of root-mean-square velocity fluctuation (fundamental com- 
ponent) in good agreement with Freymuth’s (1965) experiments (the results of 
which are broadly similar to Browand’s). Consequently this discrepancy between 
linearized theory, and the experiments in the appropriate ranges of amplitude, 
has been resolved. 

We wish to comment, however, that the results of the present paper also show 
antisymmetry of the fundamental component of (3)a about y = 0, as can be seen 
from (3.20) when differentiated with respect to y, and from (7.14). This feature is 
not present in any of the measured profiles of Browand, although changes take 
place from the linearized-theory profiles of Michalke. Consequently it seems 
that equilibria of the kind discussed here were not developed in Browand’s 
experiments. 

There is a relevant comparison we can make, however; we may judge together 
the experimental and theoretical root-mean-square velocity fluctuations of the 
first harmonic when that of the fundamental is specified by the experimental 
evidence. In  figure 10(b) of Browand’s paper the fundamental oscillates with a 
maximum amplitude, of 7.6 % of the maximum flow velocity, while the 
first-harmonic component has maximum amplitude (?$)tam., of 1.3 %. From 
(3.20) of this paper, or from (7.3), we have 

wf = - e sech y tanh y cos 5 + $e2 seeh2 y tanh y cos 25 + O(e3), 

since the fluctuating part, uf, is the same in both formulae to order (€2). Thus, 
to O(e2), 

1 - 4  (q)#&. = - e sech y I tanh yI ; ( u ~ ) ~ - .  = ~ e2 sech2 y I tanh y I. 1 
42 2 J2 

The maximum value for the fundamental is s/(2 $4, while that of the first 
harmonic is e2/(3 46). Now we take axes moving so as to reduce the lower fluid to 
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rest, as in the experiments and then the maximum velocity is 2. Referred to that 
maximum the root-mean-square components are s/(4 $2) for the fundamental 
and s2/(61/6) for the first harmonic. If we choose s so that 6/(4,/2) = 0.076 to  
matchtheexperimentalvalue (7.6 yo), weobtains = 0.43; thens2/(6J6) = 0.0126, 
which is close to Browand’s value (1.3 % of maximum flow velocity). This com- 
parison is satisfactory, as is a similar one for figure 1O(c) of Browand’s paper, 
when we recognize that we have ignored terms of order s2 = 0.185 times each of 
the above values, and have ignored the lack of correspondence of experimental 
and theoretical wave-numbers. Consequently it seems that non-linear theories 
of this type do give reasonably-correct amplitude ratios between the fundamental 
and harmonic, for a given overall amplitude. At later stages of the experiments, 
the present theory does not apply since subharmonics develop (half frequency) 
very strongly; an explanation of this phenomenon has been advanced by Kelly 
(1967). 

The exact solutions presented in part 2 are possible solutions of the inviscid 
equations of motion. They are not the only solutions of the periodic shear-layer 
type, as can be seen by comparison with 1. Moreover, they may be, and probably 
are, unstable in some amplitude ranges against other perturbations (Kelly 
1967). For these reasons they should not be regarded as justifying any notions as 
to how large-amplitude (non-linear) rotational motions develop in shear layers. 
Especially the fact that, in certain ranges of the parameters, strong vorticity 
concentrations are present does not imply that such concentrations are 
necessarily present in experiment. But if concentrations were found to exist 
in experimental conditions related to the form of the solutions described here, 
those solutions would presumably be relevant. The author does not, however, 
know of any convincing experimental evidence of such concentrations. 

The solutions presented here, because they are an exact consequence of certain 
equations, are of theoretical and illustrative value. Especially it is helpful to see 
a solution of Laplace’s equation, namely that for the flow due to a set of point 
vortices equi-spaced along a line, related to a class of rotational flows. This result, 
in itself, gives added meaning to the concept of point-vortex solutions of the 
irrotational-flow equations. It would be of great interest to know more about the 
stability of this class of flows. Certain special cases have received attention: on 
the one hand Kelly (1967) has shown that a basic flow of the form (6.6), namely 
a small perturbation from the tanh y profile, is unstable against two-dimensional 
perturbations of double the basic x-wavelength, and his theory is in agreement 
with much experimental evidence; and on the other hand (Lamb 1932) the flow 
due to a set of point vortices also is unstable for two-dimensional disturbances 
of twice the basic x-wavelength, in the sense that the vortices deviate from their 
original positions. These two examples arise from instabilities of the extreme 
cases (C + 1 and C + co) of the class of solutions, and i t  would be of interest to 
know, from a stability analysis, whether the wavelength doubling phenomenon is 
typical for all or many members of the class. 

Finally, we emphasize that many of the very important features associated 
with three-dimensionality in shear flows are not touched upon in this paper (cf. 
Benney 1961; Stuart 1965). 
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